Untersuchungen in den Zweistoffsystemen La₂O₃—(CaO, SrO, BaO)

Von

G. Purt und E. Modern

Aus der Fa. Cerberus AG. in Männedorf, Schweiz

Mit 2 Abbildungen

(Eingegangen am 15. Mai 1968)

Der Einbau von Lanthanoxid in die Erdalkalioxide CaO, SrO und BaO wurde auf röntgenographischem Wege untersucht. Bei 1000°C geglühte Proben zeigen folgende Löslichkeiten für La₂O₃: 1 Mol% in BaO, 2,4 Mol% in SrO und praktisch keine Löslichkeit in CaO.

The incorporation of lanthanum oxide into CaO, SrO and BaO was studied by X-ray methods. The incorporated quantities of $\rm La_2O_3$ in samples decarbonized at 1000° C were found to be 1 mol% for BaO, 2.4 mol% for SrO and no solubility for CaO.

Ziel der vorliegenden Arbeit war die Bestimmung der Löslichkeit von La₂O₃ in den Erdalkalioxiden.

Die Zustandsdiagramme der Systeme: Erdalkalimetalloxid—Lanthanoxid sind zum Teil bekannt. So hat Rabenau¹ bei Untersuchungen im Dreistoff CaO—La₂O₃—ZrO keine Verbindung und auch keine gegenseitige Löslichkeit zwischen CaO und La₂O₃ gefunden. Dagegen fehlen in einer Untersuchung des Dreistoffes BeO—SrO—La₂O₃² Angaben über das Verhalten von SrO—La₂O₃. Im System BaO—La₂O₃ haben Auriol und Wurm³ eine Verbindung BaO·La₂O₃ beobachtet. Diese Verbindung wird auch von Schwarz und Bommert⁴ beschrieben: Bkhargova

¹ A. Rabenau, Z. anorg. allgem. Chem. 228, 226 (1956).

² A. Auriol, G. Hauser und J. G. Wurm, Phase diagrams for Ceramicists, The American Ceramic Society, 1964, S. 201.

³ A. Auriol und J. G. Wurm, l. c., u. zw. S. 97.

⁴ H. Schwarz und D. Bommert, Z. Naturforsch. 19b, 955 (1964).

et al. 5 gelang es allerdings nicht, diese Verbindung zu erhalten. $Fo\ddot{e}x^6$ hat die Löslichkeit der Erdalkalioxide CaO, SrO und BaO in La $_2$ O $_3$ an geschmolzenen und sodann abgeschreckten Proben mit Hilfe röntgenographischer Methoden zu 16, 18 bzw. 14 Mol $_2$ 0 ermittelt.

Das Verhalten der Erdalkalioxide zueinander wurde in einer Reihe von Veröffentlichungen^{7,8} behandelt, wobei diese Arbeiten vorwiegend im Hinblick auf das Interesse, das diese Verbindungen für die Herstellung von Oxidkathoden haben, durchgeführt wurden. Im Zusammenhang damit liegen auch mehrere Untersuchungen über die entsprechenden Erdalkalicarbonatsysteme⁷ vor.

Die Herstellung der Mischoxide erfolgte stets aus den Carbonaten durch Glühen im Hochvak. ($2 \cdot 10^{-5}$ Torr) bei 1000° C.

Als Ausgangsprodukte wurden verwendet:

Ba(NO₃)₂ p. A., Schering AG.*

Ca(NO₃)₂ Merck

 $Sr(NO_3)_2$ Riedel-de Haën

La₂(Co₃)₃ Schuchardt.

Den Nitratlösungen wurde jeweils in steigenden Mengen Lanthan als wasserlösliches Nitrat zugesetzt.

Die Fällung der Carbonate, sei es mit oder ohne Lanthan-Zusatz, wurde folgendermaßen durchgeführt: Zu der kalten wäßr. Nitratlösung wurde unter lebhaftem Rühren eine Lösung von Ammoncarbonat in Molverhältnissen von 1:1 bis 1:3 zugegossen. Es wurde kein merkbarer Gang dabei beobachtet. Das Rühren wurde in der Kälte durchschnittlich 20 Min. fortgesetzt, der Niederschlag durch eine Glasnutsche filtriert, mit etwas Wasser und einer kleinen Menge Aceton gewaschen und bei 60—80° C getrocknet.

Es zeigte sich dabei, daß aus neutraler oder schwach saurer Lösung (bzw. Fällungsmittel) gut filtrierbare Carbonate, aus alkalischer Lösung (bzw. Fällungsmittel) schwer filtrierbare Carbonate ausfallen. Die Konzentration an Erdalkalinitrat wurde zwischen 0,025m und 0,34m (gesätt. Lösung für Ba-nitrat in Wasser) variiert. Für die Natur der Niederschläge erwies sich die Konzentration der Ausgangslösung als nicht wesentlich.

Die weitere Verarbeitung der Proben erfolgte durch Glühen in einer Quarzschliffapparatur unter Hochvak. (2 · 10^{-5} Torr). Das so gewonnene Material wurde unter Vak. in Mark-Kapillaren eingeschmolzen und röntgenographisch untersucht (CuK $_{\alpha}$ -Strahlung). Die Gitterkonstanten der Oxide wurden durch Extrapolation nach der Methode von Riley und $Nelson^{9}$ gewonnen. Das so hergestellte BaO weist einen Gitterparameter von 5,5372 Å auf, der zwar unerheblich, aber doch kleiner ist als der von $Zollweg^{10}$ angegebene Wert (5,5391 $_{3}$ Å).

^{*} Ein ebenfalls verwendetes $BaCO_3$ (Merck) enthielt erhebliche Mengen $SrCO_3$ (etwa 0,7 Gew.%).

⁵ Rh. D. Bkhargova, L. M. Kovba, L. I. Martinenko und V. I. Spitsyn, J. Neorg. Khim. 11, 8 (1965).

⁶ M. Foëx, Bull. Soc. Chim. France 1961, 109.

⁷ J. P. Ostaptschenko, Dokl. Akad. Nauk UdSSR, Ser. fiz. 20, 1105 (1956).

⁸ J. Terada, J. physic. Soc. Japan 10, 555 (1955).

⁹ D. B. Riley und J. B. Nelson, Proc. Physic. Soc. 57, 160 (1945).

¹⁰ R. Zollweg, Physic. Rev. **100**, 671 (1955).

Eine halbquantitative spektroskopische Untersuchung ergab, daß dieses Bariumoxid einen Strontiumgehalt von etwa $0.05-0.1~{\rm Mol\%}$ $(0.04-0.08~{\rm Gew.\%})$ aufweist. Eine analoge Analyse für das oben erwähnte BaCO3 ergab sogar $0.8-1.0~{\rm Mol\%}$ $(0.55-0.7~{\rm Gew.\%})$ Sr. Im letztgenannten Falle wird der kleinere Gitterparameter bereits durch diese SrO-Menge verständlich, da eine vollständige Mischreihe BaO-SrO

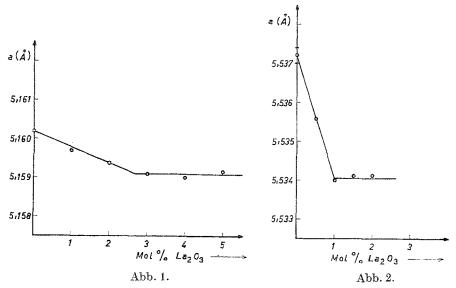


Abb. 1. Verlauf der Gitterparameter in (Sr. La)O Abb. 2. Verlauf der Gitterparameter in (Ba, La)O

besteht⁷. Dazu kommt noch, daß bei hohen Temperaturen BaO merklich flüchtig ist¹¹, so daß sich SrO in den Proben beim Glühen anreichert (s. w. u.). Das eingesetzte $Sr(NO_3)_2$ enthielt als Verunreinigung lediglich 0,1 Mol% (0,08 Gew.%) $Ca(NO_3)_2$.

Ferner wurde zusätzlich auf Lanthan durch Röntgenfluoreszenz-Analyse geprüft. Der ermittelte Lanthan-Gehalt in dem aufgearbeiteten Niederschlag war proportional der zugesetzten Menge Lanthan.

Die Löslichkeit von La₂O₃ in CaO, SrO und BaO bei 1000° C

Die röntgenographische Untersuchung der Probenansätze CaO—La₂O₃ ergab keinen Hinweis darauf, daß festes CaO bei 1000° C in nennenswerter Menge Lanthanoxid einbaut. Die Gitterparameter für die Ansätze mit 0,5, 1,0, 1,5, 2,0, 3,0, 5,0 und 10 Mol% La₂O₃ entsprechen innerhalb der Fehlergrenze dem Literaturwert von 4,8105 Å ⁱ². Bereits bei 1 Mol%

¹¹ G. Hermann, Z. physik. Chem. B 35, 298 (1937).

¹² H. E. Swanson und R. W. Tatge, JC Fel. Reports, NBS (1950).

La₂O₃ ist die intensivste Linie des La₂O₃ auf dem Diagramm zu erkennen. Die Löslichkeit kann demnach nicht mehr als Zehntel Mol% betragen.

Die Debyeogramme zeigen ferner mit zunehmendem Lanthangehalt schärfere Interferenzen des CaO, d. h., daß CaO in Gegenwart von La₂O₃ viel besser kristallisiert auftritt (weniger Gitterstörungen).

Aus den Röntgenogrammen von Ansätzen gemäß SrO mit 1,0, 2,0, 3,0, 4,0, 5,0, 10,0 und 15,0 Mol% La₂O₃ findet man eine Löslichkeit von etwa 2,4 Mol% (Abb. 1). Da SrO kaum flüchtig und ferner durch CaO praktisch nicht verunreinigt ist, dürfte die tatsächliche Löslichkeit bei 1000° C von obigem Wert wenig abweichen.

Der mit Einbau von La_2O_3 etwas abnehmende Gitterparameter steht in Einklang mit dem Befund von $Fo\ddot{e}x^6$, wonach Auflösung von SrO in La_2O_3 das Volumen vergrößert. Danach ist in diesen Oxidmischphasen der Ionenradius von Sr⁺⁺ etwas größer als der von La^{+++} .

Auch bei den SrO—La₂O₃-Proben kann man einen etwas besser kristallisierten Zustand von SrO mit La₂O₃-Zusatz gegenüber reinem SrO feststellen.

Analog wurden Proben von BaO mit 0,5, 1,0, 1,5, 2,0 und 2,5 Mol% La₂O₃ angesetzt. Die Gitterparameter der Proben mit 1 Mol% und mehr La₂O₃ stimmen innerhalb der Fehlergrenze überein. Dagegen wird bei Proben mit 0,5 Mol% La₂O₃ ein zwischen BaO und dem 1-Mol%-Zusatz beobachteter Parameter gemessen (Abb. 2). Allerdings ist hier durch Anwesenheit von SrO und infolge der beträchtlichen Flüchtigkeit von BaO ein Teil der Gitterparameterverkleinerung auf eine Zunahme des SrO-Gehaltes zurückzuführen. Um diesen Anteil herabzumindern, wurden erstens die Versuchsbedingungen konstant gehalten und außerdem die Messungen auf den Zustand eines La₂O₃-freien BaO bezogen, das derselben Glühbehandlung ausgesetzt wurde.

Schließlich wurde die Löslichkeit von La₂O₃ in einer Mischphase gemäß Sr_{0,5}Ba_{0,5}O bei 1100° C untersucht. Der Verlauf der Gitterparameter weist auf eine höhere Löslichkeit in der Mischphase hin als in SrO einerseits und BaO anderseits. Dies ist vermutlich nicht die Folge der etwas höheren Temperatur, sondern hängt mit einer Verschiebung des Verhältnisses SrO/BaO im Mischkristall zusammen. Diese Verschiebung geht aber offensichtlich weniger auf eine selektive Verdampfung von BaO als vielmehr auf eine teilweise Bildung von BaLa₂O₄⁴ zurück. Einige sehr schwache zusätzliche Linien im Röntgenogramm einer Probe mit 12% La₂O₃ sind mit dieser Verbindung, die sich offenbar schwer bildet⁵, vereinbar.

Die experimentellen Arbeiten wurden im Institut für physikalische Chemie der Universität Wien durchgeführt. Herrn Prof. Dr. H. Nowotny wird für die Bereitstellung der Institutseinrichtungen und sein förderndes Interesse gedankt.